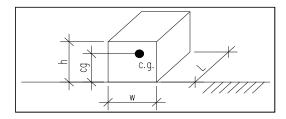

Project: LIVERMORE, CA 94550 page: 1 of 2


Date: 5/5/2015 Engineer: XXX

IE2-399 BOILER SEISMIC ANCHORAGE (ASCE 7-05)

Slab on Grade Applications Only

Equipment Parameters:

Seismic Parameters:

$R_p =$	2.500	(Default value for Anchorage per ASCE 7-05 Table 13.6-1)
$F_a =$	1.000	(ASCE 7-05 Table 11.4-1)
$S_{MS} = F_a * S_s =$	1.798	(ASCE 7-05 Eqn. 11.4-1)
$S_{DS} = 2/3*S_{MS} =$	1.199	(ASCE 7-05 Eqn. 11.4-3)

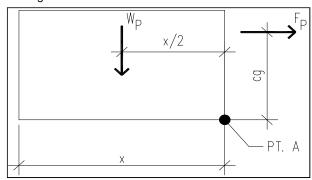
Seismic Design Category = D

Seismic Force:

$$F_{p} = (0.4*a_{p}*S_{DS}*W_{p})/(R_{p}/I_{p}) = \\ \begin{tabular}{l} \textbf{59.3} \\ \begin{tabular}{l} \textbf{LBS.} & (ASCE 7-05 Eqn. 13.3-1) \\ \begin{tabular}{l} \textbf{LBS.} & (ASCE 7-05 Eqn. 13.3-1) \\ \begin{tabular}{l} \textbf{LBS.} & (ASCE 7-05 Eqn. 13.3-2) \\ \begin{tabular}{l} \textbf{LBS.} & (ASCE 7-05 Eqn. 13.3-2) \\ \begin{tabular}{l} \textbf{LBS.} & (ASCE 7-05 Eqn. 13.3-3) \\ \begin{tabular}{l} \textbf{F}_{p, DESIGN} = \\ \end{tabular} \begin{tabular}{l} \textbf{LBS.} \\ \end{tabular} \begin{tabular}{l} \textbf{LBS.} \\ \end{tabular}$$

Project: LIVERMORE, CA 94550

Date: 5/5/2015 Engineer: XXX


IE2-399 BOILER SEISMIC ANCHORAGE (ASCE 7-05)

Design Anchorage Force:

Horizontal Shear Force Per Anchor:

$$R_H = F_p/4 =$$
 27.8 LBS.

Overturning Resistance About Point A:

$$x = 23.60$$
 in. $x = lesser of L or W$

2 of 2

page:

$$M_{OT} = F_p^* cg =$$
 215.8 LBS.-FT.

$$M_{RES} = W_p^* x/2 =$$
 303.9 LBS.-FT. OK, No Uplift

Vertical Acceleration: assume $\rho = 1.0$

Ev =
$$\rho^* Fp + 0.2^* S_{DS}^* W =$$
 101.9 LBS. (ASCE Section 13.3.1)

$$R_{VNETUP} = (M_{OT}/(2*x))-(W_p/4)+(Ev/4) =$$
 LBS. **No Uplfit**

Force Summary Per Corner:

Component Anchorage:

$$R_{HNET} =$$
 27.8 LBS. $R_{VNETUP} =$ **0.0** LBS.

Anchors Embedded in Concrete or CMU:

$$1.3*R_p*R_{HNET} =$$
 90.3 LBS.
 $1.3*R_p*R_{VNETUP} =$ **0.0** LBS.